Blast furnace which utilize self repairing anti-corrosive coating material

SLAG LEAD SR

 Management Entity]: Public Interest Incorporated Foundation, Kitakyushu foundation for the advancement of industry science and technology
 [General business representative]: Mikitomo Ikeda (DAIKI-KOGYO CO.,LTD)

[Researcher]:

① Topics and countermeasures in existing technology

2 Compare between existing technology and latest technology

Result comparison of anti-rust function

Existing technology

Latest technology

No rust although got scratch, target life time 30 years

③ Explanation of technology seeds

%pH and electric potential (equivalent to electric anti-corrosion concept, different from existing technology)

<research results>

Kyushu Institute of Technology Facility of engineering Associate Professor

4 Anti-rust mechanism identification

(1) Basic study about factor to contribute anti-rust results

• Confirmed superiority of anti-rust results of developed goods with natural current measurement.

(2) Effect from mole fraction of NO_2^- / Cl^- and pH

•Anti-rust result of special anti-rust agent is, highest when strong alkali ($pH \ge 10$) and $NO_2^{-} \land CI^{-} \ge 1$

◆ASTM standard (corrosion evaluation standard)

(5) Anti-rust result verification of anti-rust

agent

200 cycles = 1600 hours past

JIS H8502 plating corrosion resistance test (neutral salt spray cycle test) Salt spray (5% NaCl, 35°C,2h) \rightarrow dry (60°C, 25% RH, 4h) \rightarrow humid (50°C, 98% RH, 2h)

Anti-rust agent contributes to corrosion resistance of SlagLead SR.

6 Corrosion resistance due to difference of surface preparation

Surface preparation	Used steel plate	Surface preparation method
(1) Sand blast	Steel plate	Blast (Sa2 • 1/2)
(2) Clean type 3	Rusty steel plate	disk sander
	(3)Steel plate with casting	Degreasing only

≪salt spray 2000Hr≫ left: modified epoxy right: SlagLead SR

(1)Sand blasted steel plate

(2)Rusty clean type 3

(3)Steel with casting

Remarkable corrosion resistance regardless of surface preparation (can use with casted steel plate)

O Necessary coating thickness when recoat

8 Alkali resistance of welded part

▼ Problem in welded part

- a)Coating melting, exfoliation, color change due to alkaline
- b)Film swelling due to hydrogen

▼ Bad effect of alkali to film thickness of welded part

- a)Alkaline's shedding level==not over 100mm from welded part
- b)Coating color change==K₂O will change film color at least 1% in flux of welding rods
- c)Low hydrogen typed welding rods has more alkalinity comparing with ilminite

▼ Treatment methods for alkaline

a)Blast treatment = = mechanically remove
 b)Use phosphoric acid, etc. for neutralization
 c)Leave until red rust was generated

VEmission period of hydrogen

Type of	In case of s	In case emit	
welding rods	emis	by heating	
	Not oil-based coat	Oil-based coat	(Beat side heating)
Low hydrogen type (contains simultaneousl y welding)	70 hours or upper	20 hours or upper	300°C for 15 minutes
Ilmenite type	200 hours or	100 hours or	300°C for 15
	upper	upper	minutes

No film deterioration at welded part due to alkali resistance.

9 Aging of adhesive strength

Adhesive strength will increase after time past

10 Adhesion of steel plate surface

Modified epoxy Default value: 2.73MPa after SST: 2.47MPa

SlagLead SR Default value: 0.83MPa after SST: 1.07MPa

Interfacial failure

Failure inside coating

SlagLead SR will be destroyed inside film, so it will protect corrosion of steel plate surface

① Effect of remaining salt and special anti-rust agent to steel material

Sticking salt	Wash by water		Power tool		Use both power tool and waste			
volume before washing by water	Sticking salt after treatment	Removal ratio	Sticking salt after treatment	Removal ratio	Sticking salt after treatment	Removal ratio		
(NaClmg/m ²)	(NaClmg/m ²)	(%) (NaClmg/m ²) (%		(%)	(NaClmg/m ²)	(%)		
218	20	90%	110	49%	52	76%		
Refer sticking salt volume by treatment method from Steel Highway Painting and Anti-corrosion manual issued by (corporate juridical person) Japan Road Association (issued by printing on 10 March 2010) P- II 122 Calculation								
Need chlorine ion (Cl ⁻) mole quantity included in sticking salt before washing by water NaCl = 58.5 (1gram-molecular weight)								
(Cl ⁻) mole QTY=	= 0.218 × <u>35.5</u> 58.5	— × —	$\frac{1}{35.5}$ = 0.00373	(CI_) = 35.5 (1gram-ion we	ight)		

Attached table – II.1.2 Effect of sticking salt removal, separated by treatment

Need nitrite ion (NO2) mole quantity included in SlagLead SR standard specification

Coating volume of SlagLead SR is 500g/m² (undercoating 1 layer standard coating volume 500g/m²), containing special anti-rust agent 4% of total molecular weight (calculated by ingredient)

Therefore $500 \times 0.04 = 20$ (g) of special anti-rust agent is included

(NO_2^{-}) mole QTY = 20	×	<u> </u>	— >	< —	<u>1</u> 92	_	×2=	0.30303
(NO ₂ ⁻)mole QTY		0.30303	_	01 0	>	1		
Cl ⁻ mole QTY		0.00373	_	01.2	≦	I	-	OK

Special anti-rust agent = 132 (1gram - molecular weight) $(NO_2)_2^-=$ 92 (1gram - ion weight) × 2

Because special anti-rust agent 1 molecule contains 2 mole of nitrate ion, it's needed to add (Cl⁻) method

Inbound salt volume able to prevent rust = $(0.30303-0.00373) \times 58.5 = 17.50$ (NaClg/m²) = 17500 (NaClmg/m²)

Summary

④ Elucidation of anti-rust mechanism

•Anti-rust effect of special anti-rust agent is best in strong alkali ($PH \ge 10$) and $NO_2^{-} / CI^{-} \ge 1$

From investigation result comparing sticking salt in steel material with mole of special anti-rust agent, special anti-rust agent included in film is 80-350 times higher, and can expect for long life anti-rust.

12 Life time of coating film (estimated from film depletion speed)

Type of film	Fluoropolymer coating film	Hard polyurathane resin coating film	Soft polyurathane resin coating film	Epoxy resin resin coating film
Film depletion/	0.33-0.43	2	4	10
per year	μm/year	µm/year	μm/year	μm/year

[Reference] Selection from anti-rust control Vol.32, Honshu-Shikoku technical review Vol.16 (S46/7~S56/8, 10 years, exposure test result by Omaezaki)

SlagLead SR fluorex overcoat MS film thickness :

: 25µm

SlagLead SR estimated life=25µ/(0.5µ/year)=about 50 years

13 Outdoor exposure test

2/Apr/2008~8/Aug/2009 (281 days) after 1 year

Modified epoxy

Alkali coating

SlagLead SR 2 fine

2/Apr/2008~12/Jan/2012 (1379 days) after 3.8 years

Modified epoxy

Alkali coating

SlagLead SR has anti-corrosion even if in sulfur gas atmosphere.

Life time of Modified epoxy coating film (real machine chimney)

•Status of modified epoxy coating on real machine (20 years from recoating, $60\mu \times 3$ layers+ $30\mu \times 2$ layers)

If defect part occurs, corrosion will be faster, and film thickness will be peeled off

Notable corrosion at welding corner due to accumulation of splash and rain

• **Protection coating** is corroded from scratch, and that rust will expand on surface of coating and iron shell, peeling coating film off.

Construction Experiences

NYB outdoor exhaust equipment before construction

Cement silo before construction

Chemical factory before construction

NYB outdoor exhaust equipment 3 years after construction

Cement silo after construction

Chemical factory after construction

Construction Experiences

Monorail & movable bearing part

Before construction

Wakato great bridge & piers

Before construction

Kita-Kyushu airport tent square

Right after construction

After overcoat

After construction

Construction Experiences

Ship's cargo

Concrete wall surface

20t dump truck under chassis

Base of beverage tank

Before construction

Contact information

DAIKI-KOGYO CO.,LTD

Address:

5-6-64, Akasaka, Kokurakita, Kitakyushu-City, Fukuoka 〒802-0032 Japan TEL:+81-93-541-6081 FAX:+81-93-541-6516 Email:info@daiki-kogyo.co.jp

✤ SL-TECH CO.,LTD

Address:

5-6-64, Akasaka, Kokurakita, Kitakyushu-City, Fukuoka 〒802-0032 Japan TEL:+81−93−541−6101 FAX:+81−93−541−6120

E-mail: info@sl-tech.co.jp